论文标题
绕过电子秩序超快融化中的结构瓶颈
Bypassing the structural bottleneck in the ultrafast melting of electronic order
论文作者
论文摘要
量子材料的新兴特性,例如对称性相结合的相位和相关的光谱间隙,可以通过超短光子脉冲有效地操纵。冲动性光学激发通常会导致复杂的非平衡电子和晶格动力学,涉及在不同的时间尺度上进行多个过程,并且一个共同的概念是,在大约100 fs的时间范围内,电子光谱中的间隙不受晶格振动的严重影响。在这里,我们直接监视了规范电荷密度波材料中光谱间隙的光诱导崩溃,蓝色青铜RB0.3MOO3。我们发现,由于有效的热电子能量耗散而导致的超快速(约60 fs)振动无序的漏洞明显快于相对于一半循环振荡(约315 fs)相干电荷密度的波度波振幅模式的典型结构瓶颈时间。该结果不仅证明了晶格运动在光引起的电子顺序淬灭中的重要性,而且还解决了关于耦合电子晶格系统中光谱间隙性质的多年生辩论。
The emergent properties of quantum materials, such as symmetry-broken phases and associated spectral gaps, can be effectively manipulated by ultrashort photon pulses. Impulsive optical excitation generally results in a complex non-equilibrium electron and lattice dynamics that involves multiple processes on distinct timescales, and a common conception is that for times shorter than about 100 fs the gap in the electronic spectrum is not seriously affected by lattice vibrations. Here, we directly monitor the photo-induced collapse of the spectral gap in a canonical charge-density-wave material, blue bronze Rb0.3MoO3. We find that ultra-fast (about 60 fs) vibrational disordering due to efficient hot-electron energy dissipation quenches the gap significantly faster than the typical structural bottleneck time corresponding to one half-cycle oscillation (about 315 fs) of the coherent charge-density-wave amplitude mode. This result not only demonstrates the importance of incoherent lattice motion in the photo-induced quenching of electronic order, but also resolves the perennial debate about the nature of the spectral gap in a coupled electron-lattice system.