论文标题
文本分类,几乎没有使用受控概括的示例
Text Classification with Few Examples using Controlled Generalization
论文作者
论文摘要
培训文本分类的培训数据通常在实践中受到限制,尤其是对于许多输出类别或涉及许多相关分类问题的应用程序。这意味着分类器必须从有限的证据中概括,但是泛化的方式和程度取决于任务。当前的实践主要依靠预训练的单词嵌入来映射培训中未见的单词与类似的见证人。不幸的是,这将许多意义的组成部分压缩成高度限制的能力。我们的替代方案始于稀疏的预训练的表示,这些表示由未标记的解析语料库得出。根据可用的培训数据,我们选择提供相关概括的功能。这会产生特定于任务的语义向量;在这里,我们表明,与现有的最新方法相比,这些向量上的馈电网络在低数据方案中特别有效。通过将该网络与卷积神经网络配对,我们可以在低数据方案中保持这种优势,并在使用完整的训练集时保持竞争力。
Training data for text classification is often limited in practice, especially for applications with many output classes or involving many related classification problems. This means classifiers must generalize from limited evidence, but the manner and extent of generalization is task dependent. Current practice primarily relies on pre-trained word embeddings to map words unseen in training to similar seen ones. Unfortunately, this squishes many components of meaning into highly restricted capacity. Our alternative begins with sparse pre-trained representations derived from unlabeled parsed corpora; based on the available training data, we select features that offers the relevant generalizations. This produces task-specific semantic vectors; here, we show that a feed-forward network over these vectors is especially effective in low-data scenarios, compared to existing state-of-the-art methods. By further pairing this network with a convolutional neural network, we keep this edge in low data scenarios and remain competitive when using full training sets.