论文标题
通过张量分解和Kullback-Leibler Divergence协方差拟合,声音传感器阵列中的盲点方向估计
Blind Direction-of-Arrival Estimation in Acoustic Vector-Sensor Arrays via Tensor Decomposition and Kullback-Leibler Divergence Covariance Fitting
论文作者
论文摘要
提出了对声学矢量传感器(AVS)阵列的窄带信号的盲目方向(DOAS)估计值。在通过AVS测量的信号的特殊结构的基础上,我们表明来自阵列的所有接收信号的协方差矩阵承认自然的低级别4向张量表示。因此,我们的估计不是直接从原始数据中估算DOA,而是来自观测值二阶统计(SOSS)张量的独特参数典型的多核分解(CPD)。通过利用基本统计数据和最近重新出现的张量理论的结果,我们得出了一个一致的基于盲型CPD的DOAS估计值,而没有对阵列配置的事先假设。我们表明,该估计值是解决等效近似关节对角线问题的解决方案,并提出了临时迭代解决方案。此外,我们为高斯信号得出Cramér-Rao的下限,并使用它来得出迭代的Fisher评分算法,以计算此特定信号模型中最大似然估计值(MLE)。然后,我们表明,高斯模型的MLE实际上也可以用于获得改进的非高斯信号的DOA估计值(在轻度条件下),在kullback-leibler-liibler差异协方差拟合标准下,这是最佳的,并利用SOSS中的其他信息。在各种情况下,通过模拟实验证实了我们的分析结果,这也证明了精确度的可观W.R.T. AVS阵列的竞争性最先进的盲目估计,将所得的均方根误差降低到超过一个数量级。
A blind Direction-of-Arrivals (DOAs) estimate of narrowband signals for Acoustic Vector-Sensor (AVS) arrays is proposed. Building upon the special structure of the signal measured by an AVS, we show that the covariance matrix of all the received signals from the array admits a natural low-rank 4-way tensor representation. Thus, rather than estimating the DOAs directly from the raw data, our estimate arises from the unique parametric Canonical Polyadic Decomposition (CPD) of the observations' Second-Order Statistics (SOSs) tensor. By exploiting results from fundamental statistics and the recently re-emerging tensor theory, we derive a consistent blind CPD-based DOAs estimate without prior assumptions on the array configuration. We show that this estimate is a solution to an equivalent approximate joint diagonalization problem, and propose an ad-hoc iterative solution. Additionally, we derive the Cramér-Rao lower bound for Gaussian signals, and use it to derive the iterative Fisher scoring algorithm for the computation of the Maximum Likelihood Estimate (MLE) in this particular signal model. We then show that the MLE for the Gaussian model can in fact be used to obtain improved DOAs estimates for non-Gaussian signals as well (under mild conditions), which are optimal under the Kullback-Leibler divergence covariance fitting criterion, harnessing additional information encapsulated in the SOSs. Our analytical results are corroborated by simulation experiments in various scenarios, which also demonstrate the considerable improved accuracy w.r.t. a competing state-of-the-art blind estimate for AVS arrays, reducing the resulting root mean squared error by up to more than an order of magnitude.