论文标题
在广义模块化关系上叠加theta结构
Superimposing theta structure on a generalized modular relation
论文作者
论文摘要
$ f(z,w,α)= f(z,iw,β)$的一般模块化关系,其中$αβ= 1 $和$ i = \ sqrt {-1} $在评估涉及Riemann $ξ$ - function的整体过程中获得。这是对Ramanujan的Lost Notebook $ 220 $ 220 $的转换的两变量概括。这种模块化关系涉及Hurwitz Zeta函数$ζ(S,A)$的令人惊讶的概括,我们用$ζ_W(s,a)$表示。虽然$ζ_W(s,1)$本质上是汇合超几何功能和Riemann Zeta功能的产物,而$ 0 <a <1 $ $ 0 <a <1 $的$ζ_W(s,a)$是一个有趣的新特殊功能。我们表明,$ζ_W(s,a)$满足了$ζ(s,a)$的精美理论,尽管$ζ_W(s,a)$的属性比$ζ(s,a)$的属性更难得出。特别是,\ 0 <a <1 $和$ w \ in \ mathbb {c} $,$ζ_W(s,a)$可以分析地继续re $ $ $(s)> - 1 $,但简单的极点$ s = 1 $。这是通过在$ζ_W(s,a)$的上下文中获得Hermite公式的概括来完成的。函数理论互惠$ \ sin(πz) $ l_ {z}(x)= - \ frac {2}πk_{z}(x)-y_ {z}(x)$和$ j_ {z {z}(x),y_ {z}(x)$和$ k_ {z {z}(z}(x)$是bessel功能。 $ k_ {z}(x)$的新概括的理论也是如此,即$ {} _ 1k_ {z,w}(x)$。这两种理论以及$ζ_W(s,a)$的理论对于获得广义模块化关系至关重要。
A generalized modular relation of the form $F(z, w, α)=F(z, iw,β)$, where $αβ=1$ and $i=\sqrt{-1}$, is obtained in the course of evaluating an integral involving the Riemann $Ξ$-function. It is a two-variable generalization of a transformation found on page $220$ of Ramanujan's Lost Notebook. This modular relation involves a surprising generalization of the Hurwitz zeta function $ζ(s, a)$, which we denote by $ζ_w(s, a)$. While $ζ_w(s, 1)$ is essentially a product of confluent hypergeometric function and the Riemann zeta function, $ζ_w(s, a)$ for $0<a<1$ is an interesting new special function. We show that $ζ_w(s, a)$ satisfies a beautiful theory generalizing that of $ζ(s, a)$ albeit the properties of $ζ_w(s, a)$ are much harder to derive than those of $ζ(s, a)$. In particular, it is shown that for $0<a<1$ and $w\in\mathbb{C}$, $ζ_w(s, a)$ can be analytically continued to Re$(s)>-1$ except for a simple pole at $s=1$. This is done by obtaining a generalization of Hermite's formula in the context of $ζ_w(s, a)$. The theory of functions reciprocal in the kernel $\sin(πz) J_{2 z}(2 \sqrt{xt}) -\cos(πz) L_{2 z}(2 \sqrt{xt})$, where $L_{z}(x)=-\frac{2}πK_{z}(x)-Y_{z}(x)$ and $J_{z}(x), Y_{z}(x)$ and $K_{z}(x)$ are the Bessel functions, is worked out. So is the theory of a new generalization of $K_{z}(x)$, namely, ${}_1K_{z,w}(x)$. Both these theories as well as that of $ζ_w(s, a)$ are essential to obtain the generalized modular relation.