论文标题
多视图协作网络嵌入
Multi-View Collaborative Network Embedding
论文作者
论文摘要
现实世界网络通常具有多种视图,每种视图都描述了一组通用节点之间的一种相互作用。例如,在视频共享网络上,如果两个用户节点在一个视图中具有共同喜欢的视频,则链接了两个用户节点,但如果它们共享共同的订户,它们也可以在另一个视图中链接。与传统的单视网络不同,多个视图保持不同的语义以相互补充。在本文中,我们提出了Mane,这是一种多视图网络嵌入方法,以学习低维表示。与现有的研究类似,Mane取决于多样性和协作 - 虽然多样性使观点能够保持其个人语义,但协作使视图能够共同起作用。但是,我们还发现了一种新型的二阶合作形式,该形式以前尚未探索过,并将其进一步统一到我们的框架中以获得高级节点表示。此外,由于每种观点通常都具有不同的重要性W.R.T.不同的节点,我们提出了Mane+,这是一种基于注意力的MANE的扩展,以模拟节点视图的重要性。最后,我们对三个公共,现实世界的多视图网络进行了全面的实验,结果表明,我们的模型始终超过最先进的方法。
Real-world networks often exist with multiple views, where each view describes one type of interaction among a common set of nodes. For example, on a video-sharing network, while two user nodes are linked if they have common favorite videos in one view, they can also be linked in another view if they share common subscribers. Unlike traditional single-view networks, multiple views maintain different semantics to complement each other. In this paper, we propose MANE, a multi-view network embedding approach to learn low-dimensional representations. Similar to existing studies, MANE hinges on diversity and collaboration - while diversity enables views to maintain their individual semantics, collaboration enables views to work together. However, we also discover a novel form of second-order collaboration that has not been explored previously, and further unify it into our framework to attain superior node representations. Furthermore, as each view often has varying importance w.r.t. different nodes, we propose MANE+, an attention-based extension of MANE to model node-wise view importance. Finally, we conduct comprehensive experiments on three public, real-world multi-view networks, and the results demonstrate that our models consistently outperform state-of-the-art approaches.