论文标题

循环的广义彩虹图兰问题

The generalised rainbow Turán problem for cycles

论文作者

Janzer, Barnabás

论文摘要

鉴于边缘彩色的图,我们说如果其所有边缘都有不同的颜色,则是彩虹。令$ \ operatorname {ex}(n,h,$ rainbow-$ f)$表示$ h $的最大副本数量,如果$ n $ vertices上的适当边缘色的图形可以包含,如果它没有彩虹子图与$ f $。我们确定$ \ operatorname {ex}(n,c_s,$ rainbow- $ c_t)$的数量级,所有$ s,t $ at $ s \ not = 3 $。特别是,我们通过证明$ \ operatorName {ex}(n,c_ {2k},$ rainbow- $ c_ {2k})$是$θ(n^{k-1} $ k \ geq 3 $和$θ($ k = $ th),我们将回答Gerbner,Mészáros,Methuku和Palmer的问题。我们还确定了$ \ operatatorName {ex}的数量级(n,p_ \ ell,$ rainbow- $ c_ {2k})$ for All $ k,\ ell \ geq 2 $,其中$ p_ \ ell $表示$ \ ell $ edges的路径。

Given an edge-coloured graph, we say that a subgraph is rainbow if all of its edges have different colours. Let $\operatorname{ex}(n,H,$rainbow-$F)$ denote the maximal number of copies of $H$ that a properly edge-coloured graph on $n$ vertices can contain if it has no rainbow subgraph isomorphic to $F$. We determine the order of magnitude of $\operatorname{ex}(n,C_s,$rainbow-$C_t)$ for all $s,t$ with $s\not =3$. In particular, we answer a question of Gerbner, Mészáros, Methuku and Palmer by showing that $\operatorname{ex}(n,C_{2k},$rainbow-$C_{2k})$ is $Θ(n^{k-1})$ if $k\geq 3$ and $Θ(n^2)$ if $k=2$. We also determine the order of magnitude of $\operatorname{ex}(n,P_\ell,$rainbow-$C_{2k})$ for all $k,\ell\geq 2$, where $P_\ell$ denotes the path with $\ell$ edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源