论文标题
Lovelock重力理论中恒星结构的限制
Limits on stellar structures in Lovelock theories of gravity
论文作者
论文摘要
我们研究了在任意时空维度的纯洛夫洛克理论中恒星对象的紧凑性的结合,涉及电磁场。我们为通用的纯Lovelock理论得出的结合,以四维爱因斯坦重力重现了已知结果。带电壳的情况和电荷球的情况都表明,对于给定的时空维度,总体相对论中的恒星比纯洛夫洛克理论中的恒星更紧凑。另外,随着麦克斯韦场的强度增加,恒星结构变得更加紧凑,即恒星的半径降低。在四维爱因斯坦 - 加斯 - 邦网的背景下,高斯 - 骨网耦合的强度(表现为有效的电荷)的强度增加,会增加恒星的紧凑性。讨论了含义。
We study the bound on the compactness of a stellar object in pure Lovelock theories of arbitrary order in arbitrary spacetime dimensions, involving electromagnetic field. The bound we derive for a generic pure Lovelock theory, reproduces the known results in four dimensional Einstein gravity. Both the case of a charged shell and that of a charge sphere demonstrates that for a given spacetime dimension, stars in general relativity are more compact than the stars in pure Lovelock theories. In addition, as the strength of the Maxwell field increases, the stellar structures become more compact, i.e., the radius of the star decreases. In the context of four dimensional Einstein-Gauss-Bonnet gravity as well, an increase in the strength of the Gauss-Bonnet coupling (behaving as an effective electric charge), increases the compactness of the star. Implications are discussed.