论文标题

在动态环中进行黑洞搜索的紧密界限

Tight Bounds for Black Hole Search in Dynamic Rings

论文作者

Di Luna, Giuseppe Antonio, Flocchini, Paola, Prencipe, Giuseppe, Santoro, Nicola

论文摘要

在本文中,我们开始调查危险动态网络中移动代理的分布式计算。危险是由黑洞BH网络中的存在构成的,黑洞BH的网络是有害的地点,它破坏了所有传入的代理,而不会留下任何痕迹。在文献中已经广泛研究了黑洞在网络中的位置(称为黑洞搜索BHS)的问题,但总是并且只假设网络是静态的。同时,动态网络中移动代理计算的现有结果从不考虑有害站点的存在。 在本文中,我们通过研究时间环中的黑洞搜索开始填补这一研究空白,特别关注1个间隔连通性对抗动力学。如果在有限的时间内至少有一个代理人存活并知道BH的位置,则解决了问题。 BHS的主要复杂性参数是解决问题所需的代理数(称为大小),以及代理执行的移动数(称为成本);在同步系统(例如时间环)中,额外的复杂度度量是终止终止的时间。 可行性和复杂性取决于许多参数。特别是:代理商是从相同的安全节点还是从可能不同的安全位置开始,戒指的尺寸$ n $,无论是否已知$ n $,以及代理间通信的类型(白板,代币,面对面,视觉,视觉效果)。在本文中,我们为这些参数的所有实例提供了完整的可行性表征。我们所有的算法都是最佳尺寸。此外,我们为这些参数的所有实例的成本(即移动次数)和大小 - 最佳解决方案的时间建立了下限,并表明我们的算法实现了这些界限。

In this paper, we start the investigation of distributed computing by mobile agents in dangerous dynamic networks. The danger is posed by the presence in the network of a black hole BH, a harmful site that destroys all incoming agents without leaving any trace. The problem of determining the location of the black hole in a network, known as black hole search BHS, has been extensively studied in the literature, but always and only assuming that the network is static. At the same time, the existing results on mobile agents computing in dynamic networks never consider the presence of harmful sites. In this paper we start filling this research gap by studying black hole search in temporal rings, specifically focusing on 1-interval connectivity adversarial dynamics. The problem is solved if within finite time at least one agent survives and knows the location of BH. The main complexity parameters of BHS is the number of agents (called size) needed to solve the problem, and the number of moves (called cost) performed by the agents; in synchronous systems, such as temporal rings, an additional complexity measure is the amount of time until termination occurs. Feasibility and complexity depend on many parameters; in particular: whether the agents start from the same safe node or from possibly distinct safe locations, the size $n$ of the ring, whether or not $n$ is known, and the type of inter-agent communication (whiteboards, tokens, face-to-face, visual). In this paper, we provide a complete feasibility characterization for all instances of those parameters; all our algorithms are size optimal. Furthermore, we establish lower bounds on the cost (i.e., the number of moves) and time of size-optimal solutions for all instances of those parameters and show that our algorithms achieve those bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源