论文标题

单体类别中的关键对象及其HOPF MONADS

Pivotal Objects in Monoidal Categories and Their Hopf Monads

论文作者

Ghobadi, Aryan

论文摘要

单型类别中的对象$ p $ $ \ mathcal {c} $,如果其左对二和右二对象是同构的,则称为关键。给定这样的对象和双$ q $的选择,我们以兼容的方式构造了与$ p $和$ p $和$ q $的对象的类别$ \ mathcal {c}(p,q)$。我们表明,当$ \ Mathcal {c} $关闭时,此类别将提起$ \ Mathcal {C} $的单体结构和$ \ Mathcal {C} $的封闭结构。如果$ \ MATHCAL {C} $具有合适的colimits,我们表明$ \ Mathcal {C}(p,q)$是monadic,从而在任意封闭的单体类别上构建了一个hopf monad家族$ \ Mathcal {c} $。我们还介绍了单体类别的关键覆盖物,并将我们的工作扩展到任意关键图。

An object $P$ in a monoidal category $\mathcal{C}$ is called pivotal if its left dual and right dual objects are isomorphic. Given such an object and a choice of dual $Q$, we construct the category $\mathcal{C}(P,Q)$, of objects which intertwine with $P$ and $Q$ in a compatible manner. We show that this category lifts the monoidal structure of $\mathcal{C}$ and the closed structure of $\mathcal{C}$, when $\mathcal{C}$ is closed. If $\mathcal{C}$ has suitable colimits we show that $\mathcal{C}(P,Q)$ is monadic and thereby construct a family of Hopf monads on arbitrary closed monoidal categories $\mathcal{C}$. We also introduce the pivotal cover of a monoidal category and extend our work to arbitrary pivotal diagrams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源