论文标题

从壳振幅中对高维操作员的重新归一化

Renormalization of Higher-Dimensional Operators from On-shell Amplitudes

论文作者

Baratella, Pietro, Fernandez, Clara, Pomarol, Alex

论文摘要

壳上振幅方法可以从仅树级振幅中得出单环重新归一化效应,而无需循环计算。我们得出一个简单的公式,以从树级振幅的产物中获得高维操作员的异常尺寸。我们展示了这对于标准模型的Dimension-6运算符的作用,提供了该方法的简单性,优雅性和效率的明确示例。许多异常维度可以根据相同的标准模型树级振幅计算出来,以显示内壳方法的有吸引力的回收方面。通过这种方法,可以将相关的尺寸与Feynman方法中的异常维度相关联,这些维度来自非常不同的图,并获得其相对系数的非平凡检查。我们将我们的结果与已应用普通方法的文献中的结果进行了比较。

On-shell amplitude methods allow to derive one-loop renormalization effects from just tree-level amplitudes, with no need of loop calculations. We derive a simple formula to obtain the anomalous dimensions of higher-dimensional operators from a product of tree-level amplitudes. We show how this works for dimension-6 operators of the Standard Model, providing explicit examples of the simplicity, elegance and efficiency of the method. Many anomalous dimensions can be calculated from the same Standard Model tree-level amplitude, displaying the attractive recycling aspect of the on-shell method. With this method, it is possible to relate anomalous dimensions that in the Feynman approach arise from very different diagrams, and obtain non-trivial checks of their relative coefficients. We compare our results to those in the literature, where ordinary methods have been applied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源