论文标题

圆锥形的calabi-yau指标,上面有关感谢您的旋转仿射品种和凸锥

Conical Calabi-Yau metrics on toric affine varieties and convex cones

论文作者

Berman, Robert J.

论文摘要

结果表明,Q-Gorenstein的任何仿射曲面品种都承认了一个圆锥形的ricci平面kahler metric,它在Y的常规基因座上都很平滑。相应的Reeb矢量是该体积在Y的reeb锥上的独特最小化器。当Y的顶点是y siped Singularity的情况下,该案例是由Y-Is simed Singularity所示的。该证明是基于在实际欧几里得空间中具有指数右手侧的不均匀蒙格 - 安培方程的存在结果,并由适当的凸音凸出给出的规定目标,结合了y的先验估计。

It is shown that any affine toric variety Y, which is Q-Gorenstein, admits a conical Ricci flat Kahler metric, which is smooth on the regular locus of Y. The corresponding Reeb vector is the unique minimizer of the volume functional on the Reeb cone of Y. The case when the vertex point of Y is an isolated singularity was previously shown by Futaki-Ono-Wang. The proof is based on an existence result for the inhomogeneous Monge-Ampere equation in real Euclidean space with exponential right hand side and prescribed target given by a proper convex convex, combined with transversal a priori estimates on Y.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源