论文标题

通过转化的高斯马尔可夫随机场不可分割的时空模型

Non-Separable Spatio-temporal Models via Transformed Gaussian Markov Random Fields

论文作者

Azevedo, Douglas R. M., Prates, Marcos O., Willig, Michael R.

论文摘要

捕获空间和时间动态的模型适用于许多科学领域。文献中引入了不可分割的时空模型以捕获这些特征。但是,这些模型在构建和解释方面通常很复杂。我们引入了一类不可分离的转换的高斯马尔可夫随机场(TGMRF),其中依赖性结构是灵活的,并促进了有关时空,时间和时空参数的简单解释。此外,TGMRF模型具有允许专家定义模型构造中的任何所需边际分布而不会遭受时空混淆的情况。因此,在TGMRF框架下使用时空模型会导致一类新的通用模型,例如时空伽马随机场,可直接用于建模泊松强度以建模时空数据。提出的模型用于确定重要的环境特征,这些特征会影响纳尼亚·特里登斯(Nenia Tridens)的差异,尼娅·特里登斯(Nenia Tridens)是一个充分研究的热带生态系统中的主要蜗牛物种,并表征其空间和时间趋势,其在拟人化期间特别关键,这在拟人化期间特别关键,这是人类诱导的环境变化的时间和陆地使用的时间范围。

Models that capture the spatial and temporal dynamics are applicable in many science fields. Non-separable spatio-temporal models were introduced in the literature to capture these features. However, these models are generally complicated in construction and interpretation. We introduce a class of non-separable Transformed Gaussian Markov Random Fields (TGMRF) in which the dependence structure is flexible and facilitates simple interpretations concerning spatial, temporal and spatio-temporal parameters. Moreover, TGMRF models have the advantage of allowing specialists to define any desired marginal distribution in model construction without suffering from spatio-temporal confounding. Consequently, the use of spatio-temporal models under the TGMRF framework leads to a new class of general models, such as spatio-temporal Gamma random fields, that can be directly used to model Poisson intensity for space-time data. The proposed model was applied to identify important environmental characteristics that affect variation in the abundance of Nenia tridens, a dominant species of snail in a well-studied tropical ecosystem, and to characterize its spatial and temporal trends, which are particularly critical during the Anthropocene, an epoch of time characterized by human-induced environmental change associated with climate and land use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源