论文标题

用于立方图的光谱的间隙集

Gap Sets for the Spectra of Cubic Graphs

论文作者

Kollár, Alicia J., Sarnak, Peter

论文摘要

我们研究了大有限立方图的邻接矩阵光谱中的差距。众所周知,差距间隔$(2 \ sqrt {2},3)$和$ [ - 3,-2)$在Cubic Ramanujan图中获得的$和线图是最大的。我们在[-3,3]中对光谱的限制给出了最大程度的间隙并构建实现这些界限的示例。这些图产生了最大间隔间隔的新实例。我们还表明,即使是平面图,也可以通过$ [-3,3)$中的每个点来掩盖。我们的结果表明,对立方体甚至平面立方的光谱研究的研究非常微妙而非常丰富。

We study gaps in the spectra of the adjacency matrices of large finite cubic graphs. It is known that the gap intervals $(2 \sqrt{2},3)$ and $[-3,-2)$ achieved in cubic Ramanujan graphs and line graphs are maximal. We give constraints on spectra in [-3,3] which are maximally gapped and construct examples which achieve these bounds. These graphs yield new instances of maximally gapped intervals. We also show that every point in $[-3,3)$ can be gapped by cubic graphs, even by planar ones. Our results show that the study of spectra of cubic, and even planar cubic, graphs is subtle and very rich.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源