论文标题
在有限场上的固定程度的不可还原多项式的复发构造
A recurrent construction of irreducible polynomials of fixed degree over finite fields
论文作者
论文摘要
在本文中,我们详细考虑了不可约多项式与X^2的组成,并提出在有限特征的有限特征上,反复构造了固定程度的不可约多项式的构成。更确切地说,如果具有t奇数的n和2^rt的不可约多项式,则该结构会产生n od_t(2)/d不可约的多项式n的多项式和t级t,t和torder t order t and torder t和torder t t oder t and Order t t。可以使用该构造来搜索对其系数具有特定要求的不可约多项式。
In this paper we consider in detail the composition of an irreducible polynomial with X^2 and suggest a recurrent construction of irreducible polynomials of fixed degree over finite fields of odd characteristics. More precisely, given an irreducible polynomial of degree n and order 2^rt with t odd, the construction produces ord_t(2)/d irreducible polynomials of degree n and order t for a certain divisor d of n. The construction can be used, for example, to search irreducible polynomials with specific requirements on its coefficients.