论文标题
使用经济模型预测控制对非线性约束系统的定期最佳控制
Periodic optimal control of nonlinear constrained systems using economic model predictive control
论文作者
论文摘要
在本文中,我们考虑了使用模型预测控制(MPC)进行在线变化和定期变化的经济绩效指标的非线性系统定期最佳控制问题的问题。拟议的经济MPC计划使用在线优化的人工周期性轨道,以确保递归可行性和约束满意度,尽管经济绩效指数发生了不可预测的变化。我们证明,现有方法直接扩展到周期性轨道并不一定会产生理想的闭环经济绩效。取而代之的是,我们仔细修改了对人工轨迹的约束,这确保了闭环平均性能不比本地最佳的周期轨道差。在预测范围设置为零的特殊情况下,提出的方案是使用周期性约束的最新出版物的修改版本,其重要差异是,所产生的闭环具有更大的自由度,这对于确保与最佳周期性轨道的收敛至关重要。此外,我们详细介绍了合适的终端成分的量身定制的离线计算,这些计算在理论上和实际上对闭环性能改善都有益。最后,我们证明了基准示例所提出的方法的实用性和绩效改进。
In this paper, we consider the problem of periodic optimal control of nonlinear systems subject to online changing and periodically time-varying economic performance measures using model predictive control (MPC). The proposed economic MPC scheme uses an online optimized artificial periodic orbit to ensure recursive feasibility and constraint satisfaction despite unpredictable changes in the economic performance index. We demonstrate that the direct extension of existing methods to periodic orbits does not necessarily yield the desirable closed-loop economic performance. Instead, we carefully revise the constraints on the artificial trajectory, which ensures that the closed-loop average performance is no worse than a locally optimal periodic orbit. In the special case that the prediction horizon is set to zero, the proposed scheme is a modified version of recent publications using periodicity constraints, with the important difference that the resulting closed loop has more degrees of freedom which are vital to ensure convergence to an optimal periodic orbit. In addition, we detail a tailored offline computation of suitable terminal ingredients, which are both theoretically and practically beneficial for closed-loop performance improvement. Finally, we demonstrate the practicality and performance improvements of the proposed approach on benchmark examples.