论文标题
在带有平均凹面边界的Riemannian歧管上的一类简并完全非线性椭圆方程的dirichlet问题
The Dirichlet problem for a class of degenerate fully nonlinear elliptic equations on Riemannian manifolds with mean concave boundary
论文作者
论文摘要
本文研究了带有\ textit {earmave}边界的Riemannian歧管上的一类完全非线性椭圆方程的DIRICHLET问题,因为边界的平均曲率为\ textit {nontopostivel}。该证明主要基于定量边界估计。同样,我们在复杂变量中获得类似的结果。在附录中,也在某些拓扑产品歧管上构建了亚种。
This article studies the Dirichlet problem for a class of degenerate fully nonlinear elliptic equations on Riemannian manifolds with \textit{mean concave} boundary in the sense that the mean curvature of the boundary is \textit{nonpositive}. The proof is primarily based on a quantitative boundary estimate. Also, we obtain analogous results in complex variables. In Appendix, the subsolutions are also constructed on certain topologically product manifolds.