论文标题

基于增强学习的线性固定结构控制器的设计

Reinforcement Learning based Design of Linear Fixed Structure Controllers

论文作者

Lawrence, Nathan P., Stewart, Gregory E., Loewen, Philip D., Forbes, Michael G., Backstrom, Johan U., Gopaluni, R. Bhushan

论文摘要

增强学习已成功地应用于在多种应用中调整PID控制器的问题。现有的方法通常利用函数近似,例如神经网络,以更新基础过程的每个时间步中的控制器参数。在这项工作中,我们提出了一种基于随机搜索的简单有限差异方法,以调整线性固定结构控制器。为了清晰和简单,我们专注于PID控制器。我们的算法在系统的整个闭环步骤响应上运行,并迭代地改善了PID的增长,从而获得了所需的闭环响应。这允许在没有任何建模过程的情况下将稳定要求嵌入奖励功能中。

Reinforcement learning has been successfully applied to the problem of tuning PID controllers in several applications. The existing methods often utilize function approximation, such as neural networks, to update the controller parameters at each time-step of the underlying process. In this work, we present a simple finite-difference approach, based on random search, to tuning linear fixed-structure controllers. For clarity and simplicity, we focus on PID controllers. Our algorithm operates on the entire closed-loop step response of the system and iteratively improves the PID gains towards a desired closed-loop response. This allows for embedding stability requirements into the reward function without any modeling procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源