论文标题
Roteqnet:具有对称高阶张量的流体系统的旋转量价网络
RotEqNet: Rotation-Equivariant Network for Fluid Systems with Symmetric High-Order Tensors
论文作者
论文摘要
在最近的科学建模应用中,机器学习模型主要用于促进流体系统的计算模拟。旋转对称性是大多数对称流体系统的一般特性。但是,通常,当前的机器学习方法没有理论方法来保证旋转对称性。通过观察高阶对称张量的收缩和旋转操作的重要特性,我们证明旋转操作是通过张量收缩保留的。基于本文的理论理由,我们引入了旋转等级网络(ROTEQNET),以确保流体系统中高阶张量的旋转 - 等级性的性质。我们通过四个有关各种流体系统的案例研究来实施死记分解并评估我们的主张。在这些案例研究中,验证了误差降低和旋转平衡性的特性。比较研究的结果表明,我们的方法优于依赖数据增强的常规方法。
In the recent application of scientific modeling, machine learning models are largely applied to facilitate computational simulations of fluid systems. Rotation symmetry is a general property for most symmetric fluid systems. However, in general, current machine learning methods have no theoretical way to guarantee rotational symmetry. By observing an important property of contraction and rotation operation on high-order symmetric tensors, we prove that the rotation operation is preserved via tensor contraction. Based on this theoretical justification, in this paper, we introduce Rotation-Equivariant Network (RotEqNet) to guarantee the property of rotation-equivariance for high-order tensors in fluid systems. We implement RotEqNet and evaluate our claims through four case studies on various fluid systems. The property of error reduction and rotation-equivariance is verified in these case studies. Results from the comparative study show that our method outperforms conventional methods, which rely on data augmentation.