论文标题

交互式视觉设计优化的顺序画廊

Sequential Gallery for Interactive Visual Design Optimization

论文作者

Koyama, Yuki, Sato, Issei, Goto, Masataka

论文摘要

视觉设计任务通常涉及调整许多设计参数。例如,照片的颜色分级涉及许多参数,其中一些参数可能不熟悉。我们提出了一种新颖的循环优化方法,该方法允许用户通过更容易的二维搜索子任务来探索此类高维设计空间,从而有效地找到适当的参数。该方法称为顺序搜索,基于贝叶斯优化,以尽可能少地向用户保持必要的查询。为了帮助用户响应平面搜索查询,我们还建议使用基于图库的接口,该接口在自适应网格视图中安排的二维子空间中提供选项。我们称此交互式框架顺序库是因为用户从接口提供的选项中顺序选择最佳选项。我们使用合成功能的实验表明,我们的顺序平面搜索可以在迭代较少的迭代中找到令人满意的解决方案。我们还进行了初步的用户研究,结果表明,新手可以在照片增强场景中使用顺序画廊有效地完成搜索任务。

Visual design tasks often involve tuning many design parameters. For example, color grading of a photograph involves many parameters, some of which non-expert users might be unfamiliar with. We propose a novel user-in-the-loop optimization method that allows users to efficiently find an appropriate parameter set by exploring such a high-dimensional design space through much easier two-dimensional search subtasks. This method, called sequential plane search, is based on Bayesian optimization to keep necessary queries to users as few as possible. To help users respond to plane-search queries, we also propose using a gallery-based interface that provides options in the two-dimensional subspace arranged in an adaptive grid view. We call this interactive framework Sequential Gallery since users sequentially select the best option from the options provided by the interface. Our experiment with synthetic functions shows that our sequential plane search can find satisfactory solutions in fewer iterations than baselines. We also conducted a preliminary user study, results of which suggest that novices can effectively complete search tasks with Sequential Gallery in a photo-enhancement scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源