论文标题

GF(Q)的新矩形和设计的结构

Constructions of new matroids and designs over GF(q)

论文作者

Byrne, Eimear, Ceria, Michela, Ionica, Sorina, Jurrius, Relinde, Saçikara, Elif

论文摘要

完美的矩阵设计(PMD)是一种矩形,其等级的平坦都具有相同的尺寸。在本文中,我们介绍了PMD及其属性的Q-Analogue。为了这样做,我们首先为Q-Matroids建立了一个新的隐态定义。我们表明Q-Steiner系统是Q-PMD的示例,我们使用这种Q-ratroid结构来构建Q-Steiner Systems的子空间设计。我们将此结构应用于唯一已知的Q-Steiner系统,该系统具有参数s(2,3,13; 2),因此建立了具有参数2-(13,4,5115; 2)的新的子空间设计的存在。

A perfect matroid design (PMD) is a matroid whose flats of the same rank all have the same size. In this paper we introduce the q-analogue of a PMD and its properties. In order to do so, we first establish a new cryptomorphic definition for q-matroids. We show that q-Steiner systems are examples of q-PMD's and we use this q-matroid structure to construct subspace designs from q-Steiner systems. We apply this construction to the only known q-Steiner system, which has parameters S(2,3,13;2), and hence establish the existence of a new subspace design with parameters 2-(13,4,5115;2).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源