论文标题

paraconollroll的微积分在随机环境中PDE的渐近学

Asymptotics of PDE in random environment by paracontrolled calculus

论文作者

Funaki, Tadahisa, Hoshino, Masato, Sethuraman, Sunder, Xie, Bin

论文摘要

我们将paracontroll的演算应用于使用污迹轻度噪声的某个Quasilinear PDE的渐近行为,最初是在一个尺寸离散晶格上随机环境中粒子系统的时空缩放限制。我们建立了收敛结果,并在极限随机PDE的时间安排中显示了局部,并带有空间白噪声。事实证明,我们的极限随机PDE不需要任何重新归一化。我们还显示了极限方程的比较定理。

We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discrete lattice. We establish the convergence result and show a local in time well-posedness of the limit stochastic PDE with spatial white noise. It turns out that our limit stochastic PDE does not require any renormalization. We also show a comparison theorem for the limit equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源