论文标题
paraconollroll的微积分在随机环境中PDE的渐近学
Asymptotics of PDE in random environment by paracontrolled calculus
论文作者
论文摘要
我们将paracontroll的演算应用于使用污迹轻度噪声的某个Quasilinear PDE的渐近行为,最初是在一个尺寸离散晶格上随机环境中粒子系统的时空缩放限制。我们建立了收敛结果,并在极限随机PDE的时间安排中显示了局部,并带有空间白噪声。事实证明,我们的极限随机PDE不需要任何重新归一化。我们还显示了极限方程的比较定理。
We apply the paracontrolled calculus to study the asymptotic behavior of a certain quasilinear PDE with smeared mild noise, which originally appears as the space-time scaling limit of a particle system in random environment on one dimensional discrete lattice. We establish the convergence result and show a local in time well-posedness of the limit stochastic PDE with spatial white noise. It turns out that our limit stochastic PDE does not require any renormalization. We also show a comparison theorem for the limit equation.