论文标题
NDNIO2中的波动填充的平面频带不稳定性
Fluctuation-frustrated flat band instabilities in NdNiO2
论文作者
论文摘要
发现ND $ _ {1-x} $ sr $ _x $ nio $ _2 $,带有Cacuo $ _2 $ Infinite-layer结构,超过15 K的超导量围绕着孔掺杂$ x $ = 0.2提出了其基本电子和磁过程的关键问题。我们解决的无法解释的基本功能是,对于$ x $ = 0,与强烈的反铁磁(AFM)cacuo $ _2 $,NDNIO $ _2 $相同,具有相同结构的结构和正式$ D^9 $配置不承担AFM订单。我们不是以常规方式研究这个问题,是充满活力或沮丧的磁性秩序,而是AFM阶段本身的不稳定。我们能够获得静态的AFM有序状态,但是发现将平坦的,一维的Van Hove奇异性(VHS)固定在费米水平上。在一个有效的两个波段系统中,这种情况是不寻常的。 VHS使AFM相对于旋转密度不相比,呼吸和半呼吸的晶格失真不稳定,以及(先天或寄生的)电荷密度违规。这些平坦的不稳定性,单带丘陵模型的遥远亲属,因此抑制但不能消除低温下的AFM趋势。主要功能是一对活动频带($ d_ {x^2-y^2} $,$ d_ {z^2})$消除了半填充物理,并且由于不稳定性,因此排除了cacuo $ _2 $的AFM相位。这种强烈的AFM与Ni $ d_ {z^2} $轨道的强烈参与进行了旋转阶段,构成了NDNIO $ _2 $的超导性平台。
The discovery that Nd$_{1-x}$Sr$_x$NiO$_2$, with the CaCuO$_2$ infinite-layer structure, superconducts up to 15 K around the hole-doping level $x$=0.2 raises the crucial question of its fundamental electronic and magnetic processes. The unexplained basic feature that we address is that, for $x$=0 and as opposed to strongly antiferromagnetic (AFM) CaCuO$_2$, NdNiO$_2$ with the same structure and formal $d^9$ configuration does not undergo AFM order. We study this issue not in the conventional manner, as energetically unfavored or as frustrated magnetic order, but as an instability of the AFM phase itself. We are able to obtain the static AFM ordered state, but find that a flat-band, one-dimensional-like van Hove singularity (vHs) is pinned to the Fermi level. This situation is unusual in a non-half-filled, effectively two-band system. The vHs makes the AFM phase unstable to spin-density disproportionation, breathing and half-breathing lattice distortions, and (innate or parasitic) charge-density disproportionation. These flat-band instabilities, distant relatives of single band cuprate models, thereby inhibit but do not eliminate incipient AFM tendencies at low temperature. The primary feature is that a pair of active bands ($d_{x^2-y^2}$, $d_{z^2})$ eliminate half-filled physics and, due to instabilities, preclude the AFM phase seen in CaCuO$_2$. This strongly AFM correlated, conducting spin-liquid phase with strong participation of the Ni $d_{z^2}$ orbital, forms the platform for superconductivity in NdNiO$_2$.