论文标题

拓扑流体动力模式和全息图

Topological hydrodynamic modes and holography

论文作者

Liu, Yan, Sun, Ya-Wen

论文摘要

我们通过微弱打破能量动量张量的保护来研究相对论流体动力学的拓扑模式。已经发现几种系统在流体动力模式的范围中具有拓扑上的非平凡交叉节点,其中一些系统在两个方向上保护反射对称性,仅在拓扑上是非凡的。从拓扑不变的计算中进一步证实了所有这些系统的非平凡拓扑。还研究了这些系统的相关运输属性和二阶效应。能量动量张量的非保存项可能来自外部有效的对称张量事物场或重力场,该电场可以由特定的非惯性参考框架转换从原始惯性参考框架产生。最后,我们介绍了其中一种系统的全息实现。我们提出了一种新方法,以计算能量动量张量的全息病房身份,而无需计算绿色功能的所有组件并匹配双方的病房身份。

We study topological modes in relativistic hydrodynamics by weakly breaking the conservation of energy momentum tensor. Several systems have been found to have topologically nontrivial crossing nodes in the spectrum of hydrodynamic modes and some of them are only topologically nontrivial with the protection of reflection symmetries in two directions. The nontrivial topology for all these systems is further confirmed from a calculation of the topological invariant. Associated transport properties and second order effects have also been studied for these systems. The non-conservation terms of the energy momentum tensor could come from an external effective symmetric tensor matter field or a gravitational field which could be generated by a specific non-inertial reference frame transformation from the original inertial reference frame. Finally we introduce a possible holographic realization of one of these systems. We propose a new method to calculate the holographic Ward identities for the energy momentum tensor without calculating out all components of the Green functions and match the Ward identities of both sides.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源