论文标题
椭圆曲线上有序配置空间的贝蒂数量的渐近生长
Asymptotic growth of Betti numbers of ordered configuration spaces on an elliptic curve
论文作者
论文摘要
我们构建了一个DGA,以计算具有消失的Euler特征的代数品种上有序配置空间的共同体。因此,$ k $ -th的betti $ conf(c,n)$($ c $是椭圆曲线)的多项式恰好是$ 2K-2 $。我们还计算$ h^k(conf(c,n))$ $ k \ leq 5 $和任意$ n $。
We construct a dga to computing the cohomology of ordered configuration spaces on an algebraic variety with vanishing Euler characteristic. It follows that the $k$-th Betti number of $Conf(C,n)$ ($C$ is an elliptic curve) grows as a polynomial of degree exactly $2k-2$. We also compute $H^k(Conf(C,n))$ for $k \leq 5$ and arbitrary $n$.