论文标题

Depth-2神经网络在数据振作攻击下

Depth-2 Neural Networks Under a Data-Poisoning Attack

论文作者

Karmakar, Sayar, Mukherjee, Anirbit, Papamarkou, Theodore

论文摘要

在这项工作中,我们研究了在回归设置中训练浅神经网络时捍卫免受数据量攻击的可能性。我们专注于为一类Depth-2有限宽度神经网络进行监督学习,其中包括单滤波器卷积网络。在这类网络中,我们尝试在训练过程中真正输出的随机,有限和加性对抗性扭曲的情况下,在存在恶意的甲骨文的情况下学习网络权重。对于我们构建的非梯度随机算法,我们证明了对抗性攻击的大小,重量近似准确性以及所提出算法所获得的置信度最差的近距离权衡。当我们的算法使用迷你批次时,我们分析了微型批量大小如何影响收敛。我们还展示了如何利用外层权重的缩放来根据攻击的概率来对抗输出示波攻击。最后,我们提供实验证据,证明我们的算法在不同的输入数据分布(包括重型分布的实例)下如何优于随机梯度下降。

In this work, we study the possibility of defending against data-poisoning attacks while training a shallow neural network in a regression setup. We focus on doing supervised learning for a class of depth-2 finite-width neural networks, which includes single-filter convolutional networks. In this class of networks, we attempt to learn the network weights in the presence of a malicious oracle doing stochastic, bounded and additive adversarial distortions on the true output during training. For the non-gradient stochastic algorithm that we construct, we prove worst-case near-optimal trade-offs among the magnitude of the adversarial attack, the weight approximation accuracy, and the confidence achieved by the proposed algorithm. As our algorithm uses mini-batching, we analyze how the mini-batch size affects convergence. We also show how to utilize the scaling of the outer layer weights to counter output-poisoning attacks depending on the probability of attack. Lastly, we give experimental evidence demonstrating how our algorithm outperforms stochastic gradient descent under different input data distributions, including instances of heavy-tailed distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源