论文标题

CM椭圆曲线的同时减少额外的降低

Simultaneous supersingular reductions of CM elliptic curves

论文作者

Aka, Menny, Luethi, Manuel, Michel, Philippe, Wieser, Andreas

论文摘要

我们研究了具有复杂乘法的椭圆形曲线的几个超顺体素数的同时减少。我们在CM顺序的额外一致性假设下表明,当订单的判别物变大时,降低是超明基因座的乘积分支(甚至是等分分配)的。杜克和康纳特 - 瓦特萨尔的等均分布定理的这种变体是Einsiedler和Lindenstrauss最近在较高较高的对角线分类作用的结合物分类的(其他)应用。

We study the simultaneous reductions at several supersingular primes of elliptic curves with complex multiplication. We show -- under additional congruence assumptions on the CM order -- that the reductions are surjective (and even become equidistributed) on the product of supersingular loci when the discriminant of the order becomes large. This variant of the equidistribution theorems of Duke and Cornut-Vatsal is an(other) application of the recent work of Einsiedler and Lindenstrauss on the classification of joinings of higher-rank diagonalizable actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源