论文标题

K功能矩阵的总和

Sums Of K-potent Matrices

论文作者

Gargate, Ivan, Gargate, Michael

论文摘要

我们研究$ k $ - 容量矩阵的总和。我们显示了一个复杂的矩阵$ a $可以表示为$ k $量的矩阵的条件。同样,我们还获得了可以将复杂矩阵$ a $表示为有限订单元素的总和的条件。这概括了WU获得的一些结果。另外,我们研究了$ \ Mathcal {M} _ {\ Mathcal {c} f}(f)$的$ k $ - 功能矩阵的总和,带有$ f $是一个字段,证明该空间中的任何矩阵都可以表示为$ 14 $ $(k+1)$ 14 $(k+1)$ - $ 14 $(k+1)$ - 保留的效率矩阵slove soldic sold slovik by Slowik by Slowik。

We study sums of $k$-potent matrices. We show the conditions by which a complex matrix $A$ can be expressed as a sums of $k$-potent matrices. Also we obtain conditions by which a complex matrix $A$ can be expressed as a sum of finite order elements. This generalize some results obtain by Wu. Also we study the sum of $k$-potent matrices in $\mathcal{M}_{\mathcal{C}f}(F)$ with $F$ be a field and proof that any matrix in this space can be expressed as a sum of $14$ $(k+1)$-potent matrices preserving the result obtain by Slowik.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源