论文标题

过椭圆形和广义的过偏变变形

Deformations of hyperelliptic and generalized hyperelliptic polarized varieties

论文作者

Bangere, Purnaprajna, Gallego, Francisco Javier, González, Miguel

论文摘要

在本文中,我们研究了dimension $ m $和sectional属$ g $的过两极化品种$(x,l)$的变形,以使$ | l | $引起的形态$φ$的图像$ y $很流畅。如果$ l^m <2g-2 $,则众所周知,通过aidkuntion和clifford的定理,$(x,l)$的任何变形都是过度ellelliptic的。因此,我们专注于$ l^m = 2g-2 $或$ l^m = 2g $。我们证明,如果$(x,l)$是fano-k3,那么,除非$ y $是一个超等号,否则$(x,l)$的所有变形又是过度ellelliptic(如果$ y $是一个超等级,则$ $ $φ$的一般变形是嵌入的)。这与高纤维化规范曲线和过纤维k3表面的情况形成鲜明对比。如果$ l^m = 2g $,那么我们证明,在大多数情况下,$φ$的一般变形是$ 1 $的有限形态。这提供了$ 2 $形态的有趣示例,这些形态可能会变形为$ 1 $的形态。我们将结果扩展到所谓的普通过度偏光狂,卡拉比YAU和一般类型的品种。这些问题的解决方案与代数品种$ y $上的双重结构的存在或不存在密切相关。我们也解决了这一问题。

In this article we study the deformations of hyperelliptic polarized varieties $(X,L)$ of dimension $m$ and sectional genus $g$ such that the image $Y$ of the morphism $φ$ induced by $|L|$ is smooth. If $L^m < 2g-2$, it is known that, by adjunction and the Clifford's theorem, any deformation of $(X,L)$ is hyperelliptic. Thus, we focus on when $L^m=2g-2$ or $L^m=2g$. We prove that, if $(X,L)$ is Fano-K3, then, except when $Y$ is a hyperquadric, all deformations of $(X,L)$ are again hyperelliptic (if $Y$ is a hyperquadric, the general deformation of $φ$ is an embedding). This contrasts with the situation of hyperelliptic canonical curves and hyperelliptic K3 surfaces. If $L^m=2g$, then we prove that, in most cases, a general deformation of $φ$ is a finite morphism of degree $1$. This provides interesting examples of degree $2$ morphisms that can be deformed to morphisms of degree $1$. We extend our results to so-called generalized hyperelliptic polarized Fano, Calabi-Yau and general type varieties. The solutions to these questions are closely intertwined with the existence or non existence of double structures on the algebraic varieties $Y$. We address this matter as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源