论文标题

在三元素代码集中的前缀代码的比例

On the proportion of prefix codes in the set of three-element codes

论文作者

Woryna, Adam

论文摘要

令$ l $为自然数的有限顺序。在Woryna(2017,2018)中,我们得出了比率$ρ_{n,l} = | pr_n(l)|/| ud_n(l)| $的一些有趣属性前缀代码的相应子集。在本文中,我们研究长度分布是三元素序列的情况。在这种情况下,我们表明比率$ρ_{n,l} $总是大于$α_n$,其中$α_n=(n-2)/n $ for $ n> 2 $和$α_2= 1/6 $。此外,数字$α_n$是该比率的最佳下限,因为表格$ l =(1,1,c)$和$ l =(1,2,c)的长度分布确保该比率渐近接近$α_n$。也就是说,如果$ l =(1,1,c)$,则$ρ_{n,l} $倾向于$(n-2)/n $,带有$ c \ to \ to \ infty $,并且,如果$ l =(1,2,c)$,则$ρ_{2,l}倾向于$ 1/6 $ a $ c with $ c with $ c \ c \ f infty $ \ f infty $ \ f infty $ \ f infty $ \ f ty \ f ty \ f ty \ f infty $。

Let $L$ be a finite sequence of natural numbers. In Woryna (2017,2018), we derived some interesting properties for the ratio $ρ_{n,L}=|PR_n(L)|/|UD_n(L)|$, where $UD_n(L)$ denotes the set of all codes over an $n$-letter alphabet and with length distribution $L$, and $PR_n(L)\subseteq UD_n(L)$ is the corresponding subset of prefix codes. In the present paper, we study the case when the length distributions are three-element sequences. We show in this case that the ratio $ρ_{n,L}$ is always greater than $α_n$, where $α_n=(n-2)/n$ for $n>2$ and $α_2=1/6$. Moreover, the number $α_n$ is the best possible lower bound for this ratio, as the length distributions of the form $L=(1,1,c)$ and $L=(1,2,c)$ assure that the ratios asymptotically approach $α_n$. Namely, if $L=(1,1,c)$, then $ρ_{n,L}$ tends to $(n-2)/n$ with $c\to\infty$, and, if $L=(1,2,c)$, then $ρ_{2,L}$ tends to $1/6$ with $c\to\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源