论文标题

跨语性实体对齐与附带监督

Cross-lingual Entity Alignment with Incidental Supervision

论文作者

Chen, Muhao, Shi, Weijia, Zhou, Ben, Roth, Dan

论文摘要

为了解决实体对齐任务的多种语言知识图(kg)嵌入方法已投入了许多研究工作,该方法试图匹配不同语言特定于特定语言的实体,这些实体指的是相同的现实世界对象。这种方法通常会因公园之间提供的种子比对不足而阻碍。因此,我们提出了一个附带有监督的模型牛仔裤,该模型在共享的嵌入计划中共同代表多语言KGS和文本语料库,并试图通过文本中的附带监督信号来改善实体对齐。牛仔裤首先部署了一个实体接地过程,将每个公斤与单语文本语料库结合在一起。然后,进行了两个学习过程:(i)一个嵌入的学习过程,以在一个嵌入空间中编码每种语言的kg和文本,以及(ii)基于自学的对准学习过程,以迭代地诱导实体的匹配以及嵌入之间的词汇的匹配。基准数据集上的实验表明,牛仔裤可以通过偶然的监督对实体保持一致性有望改善,并且显着优于仅依靠KGS内部信息的最先进方法。

Much research effort has been put to multilingual knowledge graph (KG) embedding methods to address the entity alignment task, which seeks to match entities in different languagespecific KGs that refer to the same real-world object. Such methods are often hindered by the insufficiency of seed alignment provided between KGs. Therefore, we propose an incidentally supervised model, JEANS , which jointly represents multilingual KGs and text corpora in a shared embedding scheme, and seeks to improve entity alignment with incidental supervision signals from text. JEANS first deploys an entity grounding process to combine each KG with the monolingual text corpus. Then, two learning processes are conducted: (i) an embedding learning process to encode the KG and text of each language in one embedding space, and (ii) a selflearning based alignment learning process to iteratively induce the matching of entities and that of lexemes between embeddings. Experiments on benchmark datasets show that JEANS leads to promising improvement on entity alignment with incidental supervision, and significantly outperforms state-of-the-art methods that solely rely on internal information of KGs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源