论文标题
银河系碟片的年龄解剖:开普勒领域的红色巨人
Age dissection of the Milky Way discs: red giants in the Kepler field
论文作者
论文摘要
[删节]对红色巨星的集合研究具有精致的星号,光谱和星体限制,为重铸和解决有关恒星和银河系演变的长期问题提供了新的机会。在这里,我们推断出近5400个具有可用开普勒光曲线和垂直光谱的巨头的质量和年龄,并讨论可能影响推断出的恒星特性准确性的一些系统。首先,我们研究年龄丰富的关系。我们发现了年轻,金属丰富的恒星的缺乏,以及大量的旧恒星(8-9 Gyr),低 - [$α$/fe],超极性金属性恒星,让人联想到经过良好研究的开放式群集NGC6791的年龄和金属性。这些恒星的年龄化学旋转特性表明有效的径向迁移发生在薄磁盘中。我们发现,在我们的样品中,近400美元$α$ - 元素富含红色巨型分支(RGB)的年龄和质量与旧的(〜11 Gyr)(〜11 Gyr),几乎凝聚,化学厚的磁盘种群兼容。使用统计模型,我们表明95%的人口出生于〜1.5 Gyr。此外,我们发现低和高 - [$α$/fe]种群之间的垂直速度分散体有所不同,从而证实了他们不同的化学动力历史。然后,我们利用几乎同时的$α$ rich人群来深入了解可能改变恒星沿其进化的质量的过程,这是改善观察到的恒星质量映射到年龄的关键。我们找到证据表明,平均集成的RGB质量损失<$δ$ m> = 0.10 $ \ pm $ 0.02 msun,并且大规模发生(M $ \ gtrsim $ 1.1 msun)$α$ rich恒星在RGB上占5%的订单,并且在RC中较高,并且在RC中占据了这些伴侣的互动,而这些伴侣在这些场景中都在A a venterine中均为A A Specountion。
[Abridged] Ensemble studies of red-giant stars with exquisite asteroseismic, spectroscopic, and astrometric constraints offer a novel opportunity to recast and address long-standing questions concerning the evolution of stars and of the Galaxy. Here, we infer masses and ages for nearly 5400 giants with available Kepler light curves and APOGEE spectra, and discuss some of the systematics that may affect the accuracy of the inferred stellar properties. First, we look at age-chemical-abundances relations. We find a dearth of young, metal-rich stars, and the existence of a significant population of old (8-9 Gyr), low-[$α$/Fe], super-solar metallicity stars, reminiscent of the age and metallicity of the well-studied open cluster NGC6791. The age-chemo-kinematic properties of these stars indicate that efficient radial migration happens in the thin disk. We find that ages and masses of the nearly 400 $α$-element-rich red-giant-branch (RGB) stars in our sample are compatible with those of an old (~11 Gyr), nearly coeval, chemical-thick disk population. Using a statistical model, we show that 95% of the population was born within ~1.5 Gyr. Moreover, we find a difference in the vertical velocity dispersion between low- and high-[$α$/Fe] populations, confirming their different chemo-dynamical histories. We then exploit the almost coeval $α$-rich population to gain insight into processes that may have altered the mass of a star along its evolution, which are key to improve the mapping of the observed stellar mass to age. We find evidence for a mean integrated RGB mass loss <$Δ$M>= 0.10 $\pm$ 0.02 Msun and that the occurrence of massive (M $\gtrsim$ 1.1 Msun) $α$-rich stars is of the order of 5% on the RGB, and significantly higher in the RC, supporting the scenario in which most of these stars had undergone interaction with a companion.