论文标题

爱因斯坦 - 加斯 - 邦网理论的渐近结构

Asymptotic structure of Einstein-Gauss-Bonnet theory in lower dimensions

论文作者

Lu, H., Mao, Pujian

论文摘要

最近,已经提出了Einstein-Gauss-Bonnet重力的$ d \ rightarrow4 $限制的动作原则。这是一种特殊的标量调整理论,属于Horndeski重力家族。它还具有明确定义的$ d \ rightarrow3 $和$ d \ rightarrow2 $限制。在这项工作中,我们在Bondi-Sachs框架的三个和四个维度中检查了这一理论。在三个和四个维度中,我们发现与标量领域没有新闻功能,这意味着该理论中没有标量传播自由度。在四个维度中,质量损失公式不受高斯式术语的影响。这与没有标量辐射的事实一致。但是,高斯 - 骨网术语的效果非常重要,因为它们仅在集成常数之后出现一个顺序,并且在引力来源的四倍体中也出现。

Recently, an action principle for the $D\rightarrow4$ limit of the Einstein-Gauss-Bonnet gravity has been proposed. It is a special scalar-tensor theory that belongs to the family of Horndeski gravity. It also has a well defined $D\rightarrow3$ and $D\rightarrow2$ limit. In this work, we examine this theory in three and four dimensions in Bondi-Sachs framework. In both three and four dimensions, we find that there is no news function associated to the scalar field, which means that there is no scalar propagating degree of freedom in the theory. In four dimensions, the mass-loss formula is not affected by the Gauss-Bonnet term. This is consistent with the fact that there is no scalar radiation. However, the effects of the Gauss-Bonnet term are quite significant in the sense that they arise just one order after the integration constants and also arise in the quadrupole of the gravitational source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源