论文标题
温暖且强烈相互作用的Rydberg气体的自我诱导的透明度
Self-induced transparency in warm and strongly interacting Rydberg gases
论文作者
论文摘要
我们研究了短脉冲的分散光学非线性,这些脉冲在高度密度,温暖的原子蒸气中传播,激光通过单光子过渡将激光浓缩到rydberg $ p $ states。描述了由多普勒拓宽,rydberg原子相互作用或由于地植物和雷德伯格原子之间的热碰撞而衰减的三种不同的光原子相互作用。我们表明,使用快速的狂犬翻转和强烈的rydberg原子相互作用,无论是在吉赫兹的顺序上,都可以克服多普勒效应和碰撞衰减,从而导致纳米秒时标准的相当分散性光学非线性。在这种制度中,当纳秒脉冲的区域主要由rydberg原子相互作用确定,而不是无相互作用的区域定理时,就会出现自我诱导的透明度(SIT)。在数值和分析上,我们确定实现Rydberg-SIT的条件。我们的研究有助于使用玻璃细胞技术来实现量子信息处理。
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors where the laser resonantly excites atoms to Rydberg $P$-states via a single-photon transition. Three different regimes of the light-atom interaction, dominated by either Doppler broadening, Rydberg atom interactions, or decay due to thermal collisions between groundstate and Rydberg atoms, are described. We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect as well as collisional decay, leading to a sizable dispersive optical nonlinearity on nanosecond timescales. In this regime, self-induced transparency (SIT) emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction, rather than the area theorem of interaction-free SIT. We identify, both numerically and analytically, the condition to realize Rydberg-SIT. Our study contributes to efforts in achieving quantum information processing using glass cell technologies.