论文标题
质量失效的哈伯德链中的密度动力学
Density dynamics in the mass-imbalanced Hubbard chain
论文作者
论文摘要
我们考虑在一维晶格上的两个相互作用的费米粒子物种,并研究两个物种之间的质量比$η$如何影响粒子的(平衡)动力学。 (i)相等的质量$ {η= 1} $,即标准的费米 - 荷兰链链(即,初始的非平衡密度分布是衰减,以及一个属性的lights and lightight and lightight a press and),$ {ii)是,一个属性是无限的,$ n = 0,$ {ii)$ {ii)$ {II)有效障碍潜力的颗粒。考虑到这两个相反的情况,在中间质量比$ {0 <η<1} $的情况下,动态特别值得一提。为此,我们研究了具有鲜明的初始非平衡密度曲线的纯状态的实时动力学。依靠动态量子典型性的概念,所得的非平衡动力学可能与平衡相关函数有关。总结我们的主要结果,我们观察到,对于中等质量不平衡值的中等值而发生扩散运输,并以真实空间密度曲线的高斯扩展和动量空间中密度模式的指数衰减表现出来。对于更强的失衡,我们提供了证据表明,在中间时间尺度上,运输变得异常,尤其是我们的结果与任何$ {η> 0} $的长期限制中缺乏严格的定位是一致的。基于我们的数值分析,我们提供了有效本地化的“寿命”的估计值,该函数是$η$的函数。
We consider two mutually interacting fermionic particle species on a one-dimensional lattice and study how the mass ratio $η$ between the two species affects the (equilibration) dynamics of the particles. Focussing on the regime of strong interactions and high temperatures, two well-studied points of reference are given by (i) the case of equal masses ${η= 1}$, i.e., the standard Fermi-Hubbard chain, where initial non-equilibrium density distributions are known to decay, and (ii) the case of one particle species being infinitely heavy, ${η= 0}$, leading to a localization of the lighter particles in an effective disorder potential. Given these two opposing cases, the dynamics in the case of intermediate mass ratios ${0 < η< 1}$ is of particular interest. To this end, we study the real-time dynamics of pure states featuring a sharp initial non-equilibrium density profile. Relying on the concept of dynamical quantum typicality, the resulting non-equilibrium dynamics can be related to equilibrium correlation functions. Summarizing our main results, we observe that diffusive transport occurs for moderate values of the mass imbalance, and manifests itself in a Gaussian spreading of real-space density profiles and an exponential decay of density modes in momentum space. For stronger imbalances, we provide evidence that transport becomes anomalous on intermediate time scales and, in particular, our results are consistent with the absence of strict localization in the long-time limit for any ${η> 0}$. Based on our numerical analysis, we provide an estimate for the "lifetime" of the effective localization as a function of $η$.