论文标题
共同掩饰在COVID-19大流行中是紧迫的:基于SEIR和代理的模型,经验验证,政策建议
Universal Masking is Urgent in the COVID-19 Pandemic: SEIR and Agent Based Models, Empirical Validation, Policy Recommendations
论文作者
论文摘要
我们提供了两个模型的Covid-19流行学模型,可预测普遍面罩对SARS-COV-2病毒的传播的影响 - 一种使用基于随机的动态网络隔室SEIR(易感性接触式恢复的方法),以及其他对单个ABM(代理模型)的仿制(1)近来(1)的普遍性(1)的群体(1)近来(1)近来(1)的重要影响(1)近来(1)近来(1)均具有重大影响(1),这是一定的(1)近来(1)均值(1),这是一定的(1)。当只有50%或更少的人口戴口罩时,戴口罩,与最小的影响相比,以及(2)当通用掩盖及早在区域爆发的第50天采用通用掩蔽时,当通用掩盖迟到时采用通用掩盖时,会产生重大影响。这些效果即使在自制口罩的滤波速率下也能够保持。为了验证这些理论模型,我们将它们的预测与我们收集的新的经验数据集进行了比较,其中包括区域是否具有通用掩盖文化或政策,其日常案例增长率以及降低了每日峰值病例增长率的百分比。结果表明,正如我们的理论模拟所预测的那样,早期通用掩盖与每日病例增长率的降低之间的成功抑制和/或降低之间的相关性几乎是完美的相关性。 我们的理论和经验结果是紧急实施普遍掩盖。随着政府计划如何退出社会封锁,它正在成为重要的NPI。与经济,社会和心理健康斧头上的“全身锁定”相比,“口和鼻子的锁定”要可持续得多。 ABM模拟的交互式可视化是在http://dek.ai/masks4all上。我们建议您立即戴上戴面具的建议,正确使用的官方指南以及宣传运动,以将掩盖思维方式从纯粹的自我保护转移到负责任地保护社区的理想目标。
We present two models for the COVID-19 pandemic predicting the impact of universal face mask wearing upon the spread of the SARS-CoV-2 virus--one employing a stochastic dynamic network based compartmental SEIR (susceptible-exposed-infectious-recovered) approach, and the other employing individual ABM (agent-based modelling) Monte Carlo simulation--indicating (1) significant impact under (near) universal masking when at least 80% of a population is wearing masks, versus minimal impact when only 50% or less of the population is wearing masks, and (2) significant impact when universal masking is adopted early, by Day 50 of a regional outbreak, versus minimal impact when universal masking is adopted late. These effects hold even at the lower filtering rates of homemade masks. To validate these theoretical models, we compare their predictions against a new empirical data set we have collected that includes whether regions have universal masking cultures or policies, their daily case growth rates, and their percentage reduction from peak daily case growth rates. Results show a near perfect correlation between early universal masking and successful suppression of daily case growth rates and/or reduction from peak daily case growth rates, as predicted by our theoretical simulations. Our theoretical and empirical results argue for urgent implementation of universal masking. As governments plan how to exit societal lockdowns, it is emerging as a key NPI; a "mouth-and-nose lockdown" is far more sustainable than a "full body lockdown", on economic, social, and mental health axes. An interactive visualization of the ABM simulation is at http://dek.ai/masks4all. We recommend immediate mask wearing recommendations, official guidelines for correct use, and awareness campaigns to shift masking mindsets away from pure self-protection, towards aspirational goals of responsibly protecting one's community.