论文标题
语义分割的距离引导通道加权
Distance Guided Channel Weighting for Semantic Segmentation
论文作者
论文摘要
最近的作品通过使用深层神经网络捕获高频道编号的功能来改善多个计算机视觉任务的性能取得了巨大的成功。但是,许多提取特征的渠道都不歧视,并且包含许多冗余信息。在本文中,我们通过引入距离引导通道加权(DGCW)模块来解决上述问题。 DGCW模块是以像素的上下文提取方式构建的,在对每个像素特征向量的不同通道进行对其与其他像素的关系进行建模时,可以通过加权每个像素特征向量的不同通道来提高特征的区分性。它可以充分利用高歧视性信息,同时忽略特征地图中包含的低分歧视信息,以及捕获长期依赖性。此外,通过将DGCW模块与基线分割网络合并,我们提出了距离引导通道加权网络(DGCWNET)。我们进行广泛的实验以证明DGCWNET的有效性。特别是,它在CityScapes上获得了81.6%的MIOU,只有精细的注释数据进行培训,并且在另外两个语义分段数据集(即Pascal Context和ADE20K)上获得了令人满意的性能。代码将很快在https://github.com/lanyunzhu/dgcwnet上找到。
Recent works have achieved great success in improving the performance of multiple computer vision tasks by capturing features with a high channel number utilizing deep neural networks. However, many channels of extracted features are not discriminative and contain a lot of redundant information. In this paper, we address above issue by introducing the Distance Guided Channel Weighting (DGCW) Module. The DGCW module is constructed in a pixel-wise context extraction manner, which enhances the discriminativeness of features by weighting different channels of each pixel's feature vector when modeling its relationship with other pixels. It can make full use of the high-discriminative information while ignore the low-discriminative information containing in feature maps, as well as capture the long-range dependencies. Furthermore, by incorporating the DGCW module with a baseline segmentation network, we propose the Distance Guided Channel Weighting Network (DGCWNet). We conduct extensive experiments to demonstrate the effectiveness of DGCWNet. In particular, it achieves 81.6% mIoU on Cityscapes with only fine annotated data for training, and also gains satisfactory performance on another two semantic segmentation datasets, i.e. Pascal Context and ADE20K. Code will be available soon at https://github.com/LanyunZhu/DGCWNet.