论文标题

Deep DIH:通过深度学习,从统计上推断数字在线全息的重建

Deep DIH : Statistically Inferred Reconstruction of Digital In-Line Holography by Deep Learning

论文作者

Li, Huayu, Chen, Xiwen, Wu, Haiyu, Chi, Zaoyi, Mann, Christopher, Razi, Abolfazl

论文摘要

数字在线全息图通常用于从2D全息图中重建3D图像以用于显微镜对象。信号处理阶段中出现的技术挑战之一是消除由记录全息图引起的相结合波沿线引起的双图像。由于产生全息图时不可逆的散射过程,双图像去除通常被作为非线性反问题配制。最近,已经利用了单次在线数字全息图中直接从端到端的基于深度学习的方法重建对象波前(作为对象的3D结构的替代物)。但是,需要大量数据对来训练深度学习模型以获得可接受的重建精度。与典型的图像处理问题相反,对于在线数字全息图的曲面数据集并不存在。同样,受训练的模型受到对象的形态特性的高度影响,因此对于不同的应用可能会有所不同。因此,在实践中,数据收集可能会非常麻烦,这是将深度学习用于数字全息图的主要障碍。在本文中,我们提出了基于自动编码器的深度学习体系结构的新颖实现,仅基于当前样本,而无需大量数据集来训练模型。模拟结果证明了所提出的方法的出色性能与最先进的单杆压缩数字在线全息构建方法相比。

Digital in-line holography is commonly used to reconstruct 3D images from 2D holograms for microscopic objects. One of the technical challenges that arise in the signal processing stage is removing the twin image that is caused by the phase-conjugate wavefront from the recorded holograms. Twin image removal is typically formulated as a non-linear inverse problem due to the irreversible scattering process when generating the hologram. Recently, end-to-end deep learning-based methods have been utilized to reconstruct the object wavefront (as a surrogate for the 3D structure of the object) directly from a single-shot in-line digital hologram. However, massive data pairs are required to train deep learning models for acceptable reconstruction precision. In contrast to typical image processing problems, well-curated datasets for in-line digital holography does not exist. Also, the trained model highly influenced by the morphological properties of the object and hence can vary for different applications. Therefore, data collection can be prohibitively cumbersome in practice as a major hindrance to using deep learning for digital holography. In this paper, we proposed a novel implementation of autoencoder-based deep learning architecture for single-shot hologram reconstruction solely based on the current sample without the need for massive datasets to train the model. The simulations results demonstrate the superior performance of the proposed method compared to the state of the art single-shot compressive digital in-line hologram reconstruction method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源