论文标题
BPS Wilson Loops and Quiver品种
BPS Wilson loops and quiver varieties
论文作者
论文摘要
三维超对称场理论的圆形威尔逊环路具有较大的模量空间,可保留一组固定的增压。我们简化了此类威尔逊循环的先前结构,并修改并澄清它们的分类。对于一个通用的颤抖仪表理论,我们将模量空间确定为适当的对称组的某些$ m $的商品。这些空间是与原始箭袋或其子征服的封面相关的箭量品种。这个模量空间通常是奇异的,在奇异性上,有大量的运算符变性似乎不同,但其期望值和相关功能与所有其他规格不变的操作员都是相同的。此处介绍的配方,其中威尔逊循环在$ s^3 $上或压缩为$ s^3_b $还允许直接在这些可观察物上实施本地化程序,以前需要间接的共同学等值参数。
Three dimensional supersymmetric field theories have large moduli spaces of circular Wilson loops preserving a fixed set of supercharges. We simplify previous constructions of such Wilson loops and amend and clarify their classification. For a generic quiver gauge theory we identify the moduli space as a quotient of $C^m$ for some $m$ by an appropriate symmetry group. These spaces are quiver varieties associated to a cover of the original quiver or a subquiver thereof. This moduli space is generically singular and at the singularities there are large degeneracies of operators which seem different, but whose expectation values and correlation functions with all other gauge invariant operators are identical. The formulation presented here, where the Wilson loops are on $S^3$ or squashed $S^3_b$ also allows to directly implement a localization procedure on these observables, which previously required an indirect cohomological equivalence argument.