论文标题

3D超声检查的稀疏卷积光束形成

Sparse Convolutional Beamforming for 3D Ultrafast Ultrasound Imaging

论文作者

Cohen, Regev, Fingerhut, Nitai, Varray, Francois, Liebgott, Herve, Eldar, Yonina C.

论文摘要

实时三维(3D)超声提供了内部器官和血管的完全可视化,这对于诊断和治疗多种疾病至关重要。但是,由于传感器元素数量大量以及随之而来的数据大小,3D系统需要大量硬件。这会大大提高成本,并限制了帧速率和图像质量,从而阻止了3D超声波在全球诊所中成为常见的实践。最近的一项研究提出了一种称为卷积光束算法(COBA)的技术,该技术获得了改善的图像质量,同时允许显着减少元素。使用完整和稀疏的阵列开发并测试了2D集中成像的测试。后来被称为稀疏的Coba(Scoba)。在本文中,我们以先前的工作为基础,并引入了用于3D成像的非线性光束形成器,称为COBA-3D,由2D空间卷积组成,并收到了信号。该技术考虑了发散波的传播,因此,与标准的延迟和和光束成形相比,可以提高图像分辨率和对比度,同时启用高帧速率。将2D稀疏阵列合并到我们的方法中会创建SCOBA-3D:稀疏光束形式,可提供显着的元素减少,从而可以使用通常可用于2D设置的资源执行3D成像。为了创建2D稀薄的阵列,我们提供了一种可扩展而系统的设计方法,用于设计2D分形数组。所提出的框架为执行高质量3D成像的负担得起的超声超声设备铺平了道路,如使用Phantom和Ex-Vivo数据所证明的那样。

Real-time three dimensional (3D) ultrasound provides complete visualization of inner body organs and blood vasculature, which is crucial for diagnosis and treatment of diverse diseases. However, 3D systems require massive hardware due to the huge number of transducer elements and consequent data size. This increases cost significantly and limits both frame rate and image quality, thus preventing 3D ultrasound from being common practice in clinics worldwide. A recent study proposed a technique, called convolutional beamforming algorithm (COBA), which obtains improved image quality while allowing notable element reduction. COBA was developed and tested for 2D focused imaging using full and sparse arrays. The later was referred to as sparse COBA (SCOBA). In this paper, we build upon previous work and introduce a nonlinear beamformer for 3D imaging, called COBA-3D, consisting of 2D spatial convolution of the in-phase and quadrature received signals. The proposed technique considers diverging-wave transmission, thus, achieves improved image resolution and contrast compared with standard delay-and-sum beamforming, while enabling high frame rate. Incorporating 2D sparse arrays into our method creates SCOBA-3D: a sparse beamformer which offers significant element reduction and thus allows to perform 3D imaging with the resources typically available for 2D setups. To create 2D thinned arrays, we present a scalable and systematic way to design 2D fractal sparse arrays. The proposed framework paves the way for affordable ultrafast ultrasound devices that perform high-quality 3D imaging, as demonstrated using phantom and ex-vivo data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源