论文标题

机器学习启用片上芯片集成的硅T-缝线,足迹为1.2 $μ$ m x 1.2 $ m $ m $ m

Machine Learning enables Design of On-chip Integrated Silicon T-junctions with footprint of 1.2 $μ$m x 1.2 $μ$m

论文作者

Banerji, Sourangsu, Majumder, Apratim, Hamrick, Alex, Menon, Rajesh, Sensale-Rodriguez, Berardi

论文摘要

迄今为止,已经采用了各种优化算法来设计和改善纳米光结构的性能。在这里,我们建议利用机器学习算法。二进制加强增强学习算法(B-ARLA)以及有限差分时间域(FDTD)模拟,以设计超紧凑且有效的芯片上芯片积分的纳米光子50:50束分束器(T-JJunctions)。在这里,我们介绍了两个T型拆分器的设计,每个拆分器的占地面积仅为1.2 $ m x 1.2 $μ$ m。据我们所知,这些设计是迄今为止在模拟或实验中报告的最小的设计之一。第一个T结设计的模拟净功率传输效率约为82%,第二个设计为〜80%$在4λ=1.55μ$ m时。我们设想在本文报道的那样,该设计方法通常对于设计用于光学通信系统的任何有效的集成量设备非常有用。

To date, various optimization algorithms have been employed to design and improve the performance of nanophotonic structures. Here, we propose to utilize a machine-learning algorithm viz. binary-Additive Reinforcement Learning Algorithm (b-ARLA) coupled with finite-difference time-domain (FDTD) simulations to design ultra-compact and efficient on-chip integrated nanophotonic 50:50 beam splitters (T-junctions). Here we present the design of two T-junction splitters each with a footprint of only 1.2 $μ$m x 1.2 $μ$m. To the best of our knowledge, these designs are amongst the smallest ever reported till date across either simulations or experiments. The simulated net power transmission efficiency for the first T-junction design is ~ 82% and the second design is ~ 80% $at 4λ= 1.55 μ$m. We envision that the design methodology, as reported herein, would be useful in general for designing any efficient integrated-photonic device for optical communications systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源