论文标题
分离量子,空间量子和近似量子相关性
Separation of quantum, spatial quantum, and approximate quantum correlations
论文作者
论文摘要
通过在空间分离的量子子系统上实施局部量子测量,从而产生量子非局部相关性。根据基本数学模型,可以定义各种量子相关集的概念。在本文中,我们证明了此类量子相关性的分离。特别是,我们表明,一旦我们将当地的希尔伯特空间限制为有限的维度,即$ \ MATHCAL {C} _ {q} _ {q}^^(4,4,4,4,4,2,2)} \ neq \ neq {cc^c { 2,2)} $。 We also prove non-closure of the set of bipartite quantum correlations with four ternary measurements per party, i.e., $\mathcal{C}_{qs}^{(4, 4, 3,3)} \neq \mathcal{C}_{qa}^{(4, 4, 3,3)}$.
Quantum nonlocal correlations are generated by implementation of local quantum measurements on spatially separated quantum subsystems. Depending on the underlying mathematical model, various notions of sets of quantum correlations can be defined. In this paper we prove separations of such sets of quantum correlations. In particular, we show that the set of bipartite quantum correlations with four binary measurements per party becomes strictly smaller once we restrict the local Hilbert spaces to be finite dimensional, i.e., $\mathcal{C}_{q}^{(4, 4, 2,2)} \neq \mathcal{C}_{qs}^{(4, 4, 2,2)}$. We also prove non-closure of the set of bipartite quantum correlations with four ternary measurements per party, i.e., $\mathcal{C}_{qs}^{(4, 4, 3,3)} \neq \mathcal{C}_{qa}^{(4, 4, 3,3)}$.