论文标题

Kerr-Newman黑洞散射平面波的系列减少方法

Series reduction method for scattering of planar waves by Kerr-Newman black holes

论文作者

Stratton, Tom, Leite, Luiz C. S., Dolan, Sam R., Crispino, Luís C. B.

论文摘要

我们提供了一种实用方法,用于评估在标量,电磁和重力平面波的散射中产生的散射幅度$ f_s(θ,ϕ)$。 $ f_s $的部分波表示是一个不同的系列,但是$ f_s $本身仅在球体上的一个点上分歧。在这里,我们表明$ f_s $可以表示为减少系列的产物和仅在这一点上发散的因素的产物。还原序列的系数是原始系列中的线性组合的迭代组合,并且还表明还原序列具有正面的收敛属性。该系列还原方法起源于1950年代最初用于电子散射计算的方法,我们已将其扩展到所有骨器场的轴对称环境。

We present a practical method for evaluating the scattering amplitude $f_s(θ,ϕ)$ that arises in the context of the scattering of scalar, electromagnetic and gravitational planar waves by a rotating black hole. The partial-wave representation of $f_s$ is a divergent series, but $f_s$ itself diverges only at a single point on the sphere. Here we show that $f_s$ can be expressed as the product of a reduced series and a pre-factor that diverges only at this point. The coefficients of the reduced series are found iteratively as linear combinations of those in the original series, and the reduced series is shown to have amenable convergence properties. This series-reduction method has its origins in an approach originally used in electron scattering calculations in the 1950s, which we have extended to the axisymmetric context for all bosonic fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源