论文标题

在Lebesgue空间中具有潜力的Schrödinger运营商的回避估计值

Resolvent Estimates for Schrödinger Operators with Potentials in Lebesgue Spaces

论文作者

Ren, Tianyi

论文摘要

我们证明了在Lebesgue空间中具有潜力的Schrödinger运营商的欧几里得环境中的解决估计值:$-δ+V $。 Blair-Sire-Sogge已经获得了$(l^{2},l^{p})$估计值,但是我们使用其想法和kwon-lee的结果和方法将其结果扩展到其他$(l^{p},l^{q})$估计值,在Euclidean Smote上的kwon-Lee的结果和方法。

We prove resolvent estimates in the Euclidean setting for Schrödinger operators with potentials in Lebesgue spaces: $-Δ+V$. The $(L^{2}, L^{p})$ estimates were already obtained by Blair-Sire-Sogge, but we extend their result to other $(L^{p}, L^{q})$ estimates using their idea and the result and method of Kwon-Lee on non-uniform resolvent estimates in the Euclidean space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源