论文标题
弯曲曲线的手性
Chirality for crooked curves
论文作者
论文摘要
当放置在准直流或风中时,手性物体会旋转。我们利用这种流体动力直觉来为刚性细丝和曲线构建一种紧张的手性测量。该张量是无痕迹的,因此,如果曲线在某些轴上具有右手的扭曲,则有一个垂直轴,左手旋转。我们的措施对曲线的平滑度提出了最小的要求,因此可以很容易地用于量化生物分子和聚合物,多边形和可矫正曲线以及其他离散的几何结构的手性。
Chiral objects rotate when placed in a collimated flow or wind. We exploit this hydrodynamic intuition to construct a tensorial chirality measure for rigid filaments and curves. This tensor is trace-free, so if a curve has a right-handed twist about some axis, there is a perpendicular axis about which the twist is left-handed. Our measure places minimal requirements on the smoothness of the curve, hence it can be readily used to quantify chirality for biomolecules and polymers, polygonal and rectifiable curves, and other discrete geometrical structures.