论文标题

用于设计锂离子电池环境中实验的全球灵敏度方法

Global Sensitivity Methods for Design of Experiments in Lithium-ion Battery Context

论文作者

Pozzi, Andrea, Xie, Xiangzhong, Raimondo, Davide M, Schenkendorf, René

论文摘要

电池管理系统可能依靠数学模型来提供比标准充电协议更高的性能。电化学模型使我们能够捕获锂离子细胞内发生的现象,因此可能是最佳模型选择。但是,要具有实际价值,它们需要可靠的模型参数。不确定性量化和最佳实验设计概念是确定系统和估算参数的重要工具。不确定性定量中的近似误差会导致次优实验设计,因此,信息较低的数据和更高的参数不可靠。在这项工作中,我们提出了一种基于全球参数敏感性的实验方法的高效设计。这个新颖的概念应用于具有电解质和热动力学(SPMET)的单粒子模型,这是锂离子细胞的众所周知的电化学模型。所提出的方法避免了基于常规Fisher信息矩阵矩阵的实验设计策略中使用的输出参数线性化(即局部参数敏感性)的简化假设。因此,优化的电流输入配置文件会导致更高信息含量的实验数据,然后以更精确的参数估计。

Battery management systems may rely on mathematical models to provide higher performance than standard charging protocols. Electrochemical models allow us to capture the phenomena occurring inside a lithium-ion cell and therefore, could be the best model choice. However, to be of practical value, they require reliable model parameters. Uncertainty quantification and optimal experimental design concepts are essential tools for identifying systems and estimating parameters precisely. Approximation errors in uncertainty quantification result in sub-optimal experimental designs and consequently, less-informative data, and higher parameter unreliability. In this work, we propose a highly efficient design of experiment method based on global parameter sensitivities. This novel concept is applied to the single-particle model with electrolyte and thermal dynamics (SPMeT), a well-known electrochemical model for lithium-ion cells. The proposed method avoids the simplifying assumption of output-parameter linearization (i.e., local parameter sensitivities) used in conventional Fisher information matrix-based experimental design strategies. Thus, the optimized current input profile results in experimental data of higher information content and in turn, in more precise parameter estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源