论文标题
Equivariant $ \ MATHCAL {O} _2 $ -ABSORPTINP定理精确组
Equivariant $\mathcal{O}_2$-absorption theorem for exact groups
论文作者
论文摘要
我们表明,为了达到强大的共轭结合,每个可数的精确组都承认一个独特的$ \ Mathcal {o} _2 $ -ABSORBING,在Cuntz algebra $ \ Mathcal {O} _2 _2 _2 $的情况下,具有Quasi-Central-Contral近似属性(QAP)。特别是,我们建立了Kirchberg $ \ Mathcal {o} _2 $ -ABSORPONT定理的模棱两可的类似物。
We show that, up to strong cocycle conjugacy, every countable exact group admits a unique equivariantly $\mathcal{O}_2$-absorbing, pointwise outer action on the Cuntz algebra $\mathcal{O}_2$ with the quasi-central approximation property (QAP). In particular, we establish the equivariant analogue of the Kirchberg $\mathcal{O}_2$-absorption theorem for these groups.