论文标题
托里的Hayward准局部能
Hayward Quasilocal Energy of Tori
论文作者
论文摘要
本文致力于研究托里海沃德半腹能的阳性。边缘捕获的托里具有非负Hayward能量。我们考虑了与外部Schwarzschild溶液相匹配的球形对称恒定恒星的场景。我们表明,恒星内的任何通用托里(是否被扭曲)都具有严格的Hayward能量。出乎意料的是,我们发现施瓦茨柴尔德(Schwarzschild Horizon)外部邻里的“薄”摩尔鸟托里的分析示例。通过旋转静态坐标中的标准圆圈,将这些摩擦扫除,但在各向同性坐标中被扭曲。数值结果还表明,在恒星边界和施瓦茨柴尔德地平线之间的区域中存在水平拖动的Tori,具有严格的负Hayward能量。
This paper is dedicated to the investigation of the positivity of the Hayward quasilocal energy of tori. Marginally trapped tori have nonnegative Hayward energy. We consider a scenario of a spherically symmetric constant density star matched to an exterior Schwarzschild solution. We show that any generic tori within the star, distorted or not, trapped or not, have strictly positive Hayward energy. Surprisingly we find analytic examples of `thin' tori with negative Hayward energy in the outer neighborhood of the Schwarzschild horizon. These tori are swept out by rotating the standard round circles in the static coordinates but they are distorted in the isotropic coordinates. Numerical results also indicate that there exist horizontally dragged tori with strictly negative Hayward energy in the region between the boundary of the star and the Schwarzschild horizon.