论文标题

与光子准颗粒的光 - 摩托

Light-matter interactions with photonic quasiparticles

论文作者

Rivera, Nicholas, Kaminer, Ido

论文摘要

光与物质之间的相互作用在许多科学领域都起着工具作用,从而在光谱,传感,量子信息处理和激光器中引起了重要的应用。在大多数这些应用中,通过电磁平面波以真空速度传播的电磁平面波。结果,通常可以将光 - 物质相互作用视为非常弱,并以量子电动力学(QED)的最低顺序捕获。然而,将光子耦合到材料准颗粒(例如等离子体,声子和激子)的最新进展迫使我们概括了我们在每种光 - 物质相互作用的核心中对光子的描绘方式。在这张新图片中,现在部分物质特征的光子可以具有极大的极化和分散,并局限于一些纳米的尺度。这种光子准颗粒可以使很多以前观察到的光线相互作用现象在与结合电子的相互作用和自由电子的相互作用中都无法观察到。这篇综述着重于在实现与光子准颗粒的新光线相互作用时令人兴奋的理论和实验发展。作为几个示例,我们讨论了光子准粒子如何实现室温强耦合,在原子中的超快“禁止过渡”以及Cherenkov效应的新应用以及超快电子显微镜和紧凑型X射线源的新概念。

Interactions between light and matter play an instrumental role in many fields of science, giving rise to important applications in spectroscopy, sensing, quantum information processing, and lasers. In most of these applications, light is considered in terms of electromagnetic plane waves that propagate at the speed of light in vacuum. As a result, light-matter interactions can usually be treated as very weak, and captured at the lowest order in quantum electrodynamics (QED). However, recent progress in coupling photons to material quasiparticles (e.g., plasmons, phonons, and excitons) forces us to generalize the way we picture the photon at the core of every light-matter interaction. In this new picture, the photon, now of partly matter-character, can have greatly different polarization and dispersion, and be confined to the scale of a few nanometers. Such photonic quasiparticles enable a wealth of light-matter interaction phenomena that could not have been observed before, both in interactions with bound electrons and with free electrons. This Review focuses on exciting theoretical and experimental developments in realizing new light-matter interactions with photonic quasiparticles. As just a few examples, we discuss how photonic quasiparticles enable room-temperature strong coupling, ultrafast "forbidden transitions" in atoms, and new applications of the Cherenkov effect, as well as breakthroughs in ultrafast electron microscopy and new concepts for compact X-ray sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源