论文标题

Padé近似值中的根分布及其对全体形态嵌入方法收敛的影响

Root Distribution in Padé Approximants and its Effect on Holomorphic Embedding Method Convergence

论文作者

Li, Songyan, Dronamraju, Abhinav, Tylavsky, Daniel

论文摘要

解决非线性代数方程的要求在电力系统模拟领域无处不在。尽管基于牛顿的方法已被用来优势,但有时它们不会融合,使用户想知道解决方案是否存在。除了提高鲁棒性外,全体形态嵌入方法(HEM)的一个优点是,即使它们不收敛,padé近似值(PAS)的根图也可以使用逆 - $α$平面中的功能来确定是否存在解决方案。应用于原点扩展的近对角性PA的收敛因子(CF)取决于相关分支切割(BC)的对数能力(BC)和评估点与原点的距离。但是,管理此速度的基本机制是晦涩难懂的。我们证明,在复杂平面中,PA根在BC上的最终分布微弱地收敛到在物理环境中具有相同拓扑的2-D导体系统上静电电荷的平衡分布。与Maclaurin系列的特性一起可以用来解释CF方程的结构,并通过数值实验证明了理论收敛行为。

The requirement for solving nonlinear algebraic equations is ubiquitous in the field of electric power system simulations. While Newton-based methods have been used to advantage, they sometimes do not converge, leaving the user wondering whether a solution exists. In addition to improved robustness, one advantage of holomorphic embedding methods (HEM) is that, even when they do not converge, roots plots of the Padé approximants (PAs) to the functions in the inverse-$α$ plane can be used to determine whether a solution exist. The convergence factor (CF) of the near-diagonal PAs applied to functions expanded about the origin is determined by the logarithmic capacity of the associated branch cut (BC) and the distance of the evaluation point from the origin. However the underlying mechanism governing this rate has been obscure. We prove that the ultimate distribution of the PA roots on the BC in the complex plane converges weakly to the equilibrium distribution of electrostatic charges on a 2-D conductor system with the same topology in a physical setting. This, along with properties of the Maclaurin series can be used to explain the structure of the CF equation We demonstrate the theoretical convergence behavior, with numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源