论文标题
JT重力有限截止
JT gravity at finite cutoff
论文作者
论文摘要
我们通过两种方式计算有限截止的$ 2D $ JACKIW-TEITELBOIM(JT)重力的分区功能:(i)通过对Radial量化中的Wheeler-Dewitt波功能进行精确评估,并通过直接计算Euclidean Path积分。两种方法都涉及公制和DILATON的DIRICHLET边界条件。在第一种方法中,可以通过将约束方程减少到可以准确求解的两个一阶功能衍生方程(包括因子排序)来找到径向波函数。在第二种方法中,当用磁盘拓扑结合表面上的表面求和到截止中的所有顺序时,我们会准确执行路径积分。这两种结果都与经营者变形的最近得出的分区函数完全匹配了类似于$ 2D $ CFTS的$ t \ bar {t} $变形。这种平等可以看作是$ t \ bar {t} $变形的拟议全息解释的具体证据,这是ADS边界向散装中有限的径向距离的运动。
We compute the partition function of $2D$ Jackiw-Teitelboim (JT) gravity at finite cutoff in two ways: (i) via an exact evaluation of the Wheeler-DeWitt wave-functional in radial quantization and (ii) through a direct computation of the Euclidean path integral. Both methods deal with Dirichlet boundary conditions for the metric and the dilaton. In the first approach, the radial wavefunctionals are found by reducing the constraint equations to two first order functional derivative equations that can be solved exactly, including factor ordering. In the second approach we perform the path integral exactly when summing over surfaces with disk topology, to all orders in perturbation theory in the cutoff. Both results precisely match the recently derived partition function in the Schwarzian theory deformed by an operator analogous to the $T\bar{T}$ deformation in $2D$ CFTs. This equality can be seen as concrete evidence for the proposed holographic interpretation of the $T\bar{T}$ deformation as the movement of the AdS boundary to a finite radial distance in the bulk.